

Welcome to Choices Enum’s documentation!

Contents:

	Choices Enum
	Installation

	Features

	Usage examples

	Django

	Graphene

	Schematics

	Installation
	Stable release

	From sources

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Tools

	History
	0.7.0 (2020-08-02)

	0.6.0 (2019-09-05)

	0.5.3 (2019-02-06)

	0.5.2 (2019-01-18)

	0.5.1 (2019-01-04)

	0.5.0 (2019-01-04)

	0.4.0 (2018-07-13)

	0.3.0 (2018-06-22)

	0.2.2 (2017-12-01)

	0.2.1 (2017-09-30)

	0.2.0 (2017-09-11)

	0.1.7 (2017-09-10)

	0.1.6 (2017-09-08)

	0.1.5 (2017-09-05)

	0.1.4 (2017-08-28)

	0.1.3 (2017-08-28)

	0.1.2 (2017-08-27)

	0.1.0 (2017-08-27)

Indices and tables

	Index

	Module Index

	Search Page

Choices Enum

[image: _images/choicesenum.svg]
 [https://pypi.python.org/pypi/choicesenum][image: _images/python-choicesenum.svg]
 [https://travis-ci.org/loggi/python-choicesenum][image: Documentation Status]
 [https://python-choicesenum.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://coveralls.io/github/loggi/python-choicesenum?branch=master]Python’s Enum with extra powers to play nice with labels and choices fields.

	Free software: BSD license

	Documentation: https://python-choicesenum.readthedocs.io.

Installation

Install choicesenum using pip:

$ pip install choicesenum

Features

	An ChoicesEnum that can be used to create constant groups.

	ChoicesEnum can define labels to be used in choices fields.

	Django fields included: EnumCharField and EnumIntegerField.

	All ChoicesEnum types can be compared against their primitive values directly.

	Support (tested) for Python 2.7, 3.5, 3.6, 3.7 and 3.8.

	Support (tested) for Django 1.9, 1.10, 1.11, 2.0, 2.1, 2.2 and 3.0.

Usage examples

Example with HttpStatuses:

class HttpStatuses(ChoicesEnum):
 OK = 200
 BAD_REQUEST = 400
 UNAUTHORIZED = 401
 FORBIDDEN = 403

Example with Colors:

from choicesenum import ChoicesEnum

class Colors(ChoicesEnum):
 RED = '#f00', 'Vermelho'
 GREEN = '#0f0', 'Verde'
 BLUE = '#00f', 'Azul'

Comparison

All Enum types can be compared against their values:

assert HttpStatuses.OK == 200
assert HttpStatuses.BAD_REQUEST == 400
assert HttpStatuses.UNAUTHORIZED == 401
assert HttpStatuses.FORBIDDEN == 403

status_code = HttpStatuses.OK
assert 200 <= status_code <= 300

assert Colors.RED == '#f00'
assert Colors.GREEN == '#0f0'
assert Colors.BLUE == '#00f'

Label for free

All Enum types have by default a display derived from the enum identifier:

assert HttpStatuses.OK.display == 'Ok'
assert HttpStatuses.BAD_REQUEST.display == 'Bad request'
assert HttpStatuses.UNAUTHORIZED.display == 'Unauthorized'
assert HttpStatuses.FORBIDDEN.display == 'Forbidden'

You can easily define your own custom display for an Enum item using a tuple:

class HttpStatuses(ChoicesEnum):
 OK = 200, 'Everything is fine'
 BAD_REQUEST = 400, 'You did a mistake'
 UNAUTHORIZED = 401, 'I know your IP'
 FORBIDDEN = 403

assert HttpStatuses.OK.display == 'Everything is fine'
assert HttpStatuses.BAD_REQUEST.display == 'You did a mistake'
assert HttpStatuses.UNAUTHORIZED.display == 'I know your IP'
assert HttpStatuses.FORBIDDEN.display == 'Forbidden'

Dynamic properties

For each enum item, a dynamic property is_<enum_item> is generated to allow
quick boolean checks:

color = Colors.RED
assert color.is_red
assert not color.is_blue
assert not color.is_green

This feature is usefull to avoid comparing a received enum value against a know enum item.

For example, you can replace code like this:

status = HttpStatuses.BAD_REQUEST

def check_status(status):
 if status == HttpStatuses.OK:
 print("Ok!")

To this:

def check_status(status):
 if status.is_ok:
 print("Ok!")

Custom methods and properties

You can declare custom properties and methods:

class HttpStatuses(ChoicesEnum):
 OK = 200, 'Everything is fine'
 BAD_REQUEST = 400, 'You did a mistake'
 UNAUTHORIZED = 401, 'I know your IP'
 FORBIDDEN = 403

 @property
 def is_error(self):
 return self >= self.BAD_REQUEST

assert HttpStatuses.OK.is_error is False
assert HttpStatuses.BAD_REQUEST.is_error is True
assert HttpStatuses.UNAUTHORIZED.is_error is True

Iteration

The enum type is iterable:

>>> for color in Colors:
... print(repr(color))
Color('#f00').RED
Color('#0f0').GREEN
Color('#00f').BLUE

Order is guaranteed only for py3.4+. For fixed order in py2.7, you
can implement a magic attribute _order_:

from choicesenum import ChoicesEnum

class Colors(ChoicesEnum):
 order = 'RED GREEN BLUE'

 RED = '#f00', 'Vermelho'
 GREEN = '#0f0', 'Verde'
 BLUE = '#00f', 'Azul'

Choices

Use .choices() method to receive a list of tuples (item, display):

assert list(Colors.choices()) == [
 ('#f00', 'Vermelho'),
 ('#0f0', 'Verde'),
 ('#00f', 'Azul'),
]

Values

Use .values() method to receive a list of the inner values:

assert Colors.values() == ['#f00', '#0f0', '#00f',]

Options

Even if a ChoicesEnum class is an iterator by itself, you can use .options() to convert the enum items to a list:

assert Colors.options() == [Colors.RED, Colors.GREEN, Colors.BLUE]

A “dict like” get

Use .get(value, default=None) method to receive default if value is not an item of enum:

assert Colors.get(Colors.RED) == Colors.RED
assert Colors.get('#f00') == Colors.RED
assert Colors.get('undefined_color') is None
assert Colors.get('undefined_color', Colors.RED) == Colors.RED

Compatibility

The enum item can be used whenever the value is needed:

assert u'Currrent color is {c} ({c.display})'.format(c=color) ==\
 u'Currrent color is #f00 (Vermelho)'

Even in dicts and sets, as it shares the same hash() from his value:

d = {
 HttpStatuses.OK.value: "using value",
 HttpStatuses.BAD_REQUEST: "using enum",
 401: "from original value",
}
assert d[HttpStatuses.OK] == "using value"
assert d[HttpStatuses.BAD_REQUEST.value] == "using enum"
assert d[HttpStatuses.OK] == d[HttpStatuses.OK.value]
assert d[HttpStatuses.UNAUTHORIZED] == d[401]

There’s also optimistic casting of inner types:

assert int(HttpStatuses.OK) == 200
assert float(HttpStatuses.OK) == 200.0
assert str(HttpStatuses.BAD_REQUEST) == "400"

Check membership:

assert HttpStatuses.OK in HttpStatuses
assert 200 in HttpStatuses
assert 999 not in HttpStatuses

JSON

If you want json serialization, you have at least two options:

	Patch the default serializer.

	Write a custom JSONEncoder.

ChoicesEnum comes with a handy patch funtion, you need to add this
code to somewhere at the top of everything to automagically add
json serialization capabilities:

from choicesenum.patches import patch_json
patch_json()

Note

Eventually __json__ will be added to the stdlib, see
https://bugs.python.org/issue27362

Django

Fields

Usage with the custom Django fields:

from django.db import models
from choicesenum.django.fields import EnumCharField

class ColorModel(models.Model):
 color = EnumCharField(
 max_length=100,
 enum=Colors,
 default=Colors.GREEN,
)

instance = ColorModel()
assert instance.color == Colors.GREEN
assert instance.color.is_green is True
assert instance.color.value == Colors.GREEN.value == '#0f0'
assert instance.color.display == Colors.GREEN.display

instance.color = '#f00'
assert instance.color == '#f00'
assert instance.color.value == '#f00'
assert instance.color.display == 'Vermelho'

Is guaranteed that the field value is always a ChoicesEnum item. Pay
attention that the field will only accept valid values for the Enum in use,
so if your field allow null, your enum should also:

from django.db import models
from choicesenum import ChoicesEnum
from choicesenum.django.fields import EnumIntegerField

class UserStatus(ChoicesEnum):
 UNDEFINED = None
 PENDING = 1
 ACTIVE = 2
 INACTIVE = 3
 DELETED = 4

class User(models.Model):
 status = EnumIntegerField(enum=UserStatus, null=True,)

instance = User()
assert instance.status.is_undefined is True
assert instance.status.value is None
assert instance.status == UserStatus.UNDEFINED
assert instance.status.display == 'Undefined'

again...
instance.status = None
assert instance.status.is_undefined is True

Graphene

Usage with Graphene [http://docs.graphene-python.org/en/latest/types/enums/#usage-with-python-enums] Enums:

UserStatusEnum = graphene.Enum.from_enum(UserStatus)

Schematics

Usage with Schematics [https://schematics.readthedocs.io/en/latest/usage/types.html] Enums:

from schematics.models import Model as SchematicModel
from schematics.types import StringType, DateTimeType
from choicesenum import ChoicesEnum
from choicesenum.schematics.types import ChoicesEnumType

class HttpStatuses(ChoicesEnum):
 OK = 200
 BAD_REQUEST = 400
 UNAUTHORIZED = 401
 FORBIDDEN = 403

class CustomSchematicModel(SchematicModel):
 name = StringType(required=True, max_length=255)
 created = DateTimeType(required=True, formats=('%d/%m/%Y', ''))
 http = ChoicesEnumType(HttpStatuses, required=True)

Installation

Stable release

To install Choices Enum, run this command in your terminal:

$ pip install choicesenum

This is the preferred method to install Choices Enum, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Choices Enum can be downloaded from the Github repo [https://github.com/loggi/python-choicesenum].

You can either clone the public repository:

$ git clone git://github.com/loggi/python-choicesenum

Or download the tarball [https://github.com/loggi/python-choicesenum/tarball/master]:

$ curl -OL https://github.com/loggi/python-choicesenum/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/loggi/python-choicesenum/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Choices Enum could always use more documentation, whether as part of the
official Choices Enum docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/loggi/python-choicesenum/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up choicesenum for local development.

	Fork the choicesenum repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/choicesenum.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv choicesenum
$ cd choicesenum/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 choicesenum tests
$ py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/loggi/python-choicesenum/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_choicesenum

Credits

Development Lead

	Fernando Macedo <fgmacedo@gmail.com>

Contributors

	Kristian Klette <klette@klette.us>

	Gabriela Surita <gabsurita@gmail.com>

	Leandro Gomes <leandrogs99@gmail.com>

	Tomas Fagerbekk <tomas.a.fagerbekk@gmail.com>

	Lefteris Karapetsas <lefteris@refu.co>

	Maiky Guanaes <maiky.guanaes@gmail.com>

Tools

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

History

0.7.0 (2020-08-02)

	Add support Django 3.0 (tks @klette).

	Drop support for Python 3.4.

	Fix issue when using Django EnumIntegerField on Admin.

0.6.0 (2019-09-05)

	Adding schematics contrib type ChoicesEnumType.

	Drop support for Django 1.6, 1.7, 1.8.

0.5.3 (2019-02-06)

	Fix Django migrations with default values for Django 1.7+.

0.5.2 (2019-01-18)

	Optimize member check and dynamic creation of is_<name> properties.

0.5.1 (2019-01-04)

	Fix readme RST (requires new Pypi upload).

0.5.0 (2019-01-04)

	Membership test (item in Enum) returning valid results for primitive values.

	New dict-like .get method able to return a default value (thanks @leandrogs).

	Django: Support Postgres array functions and queries (thanks @tomfa).

	Django: Support for deferring an enum field using queryset.defer() (thanks @noamkush).

	Django: 2.1 support.

0.4.0 (2018-07-13)

	Optimistic casting of inner types (thanks @gabisurita).

	Optional stdlib patch to automagic json serialization support.

	Add Python3.7 to the test matrix.

0.3.0 (2018-06-22)

	Official Django 2.0 support (0.2.2 just works fine too).

	ChoicesEnum sharing the same hash() as his value. Can be used to retrieve/restore items in dicts (d[enum] == d[enum.value]).

0.2.2 (2017-12-01)

	Fix: Support queries through select_related with no None value defined (thanks @klette).

0.2.1 (2017-09-30)

	Fix South migrations for Django 1.6.

0.2.0 (2017-09-11)

	ChoicesEnum items are comparable by their values (==, !=, >, >=, <, <=) (thanks @jodal).

	+``ChoicesEnum.values``: Returns all the Enum’s raw values (eq: [x.value for x in Enum]).

0.1.7 (2017-09-10)

	Fix: ChoicesEnum is now hashable (thanks @jodal).

0.1.6 (2017-09-08)

	Fix: Proxy __len__ calls to the inner enum value.

0.1.5 (2017-09-05)

	+ChoicesEnum.description: Alias for label, allow enum descriptors to be used by Graphene.

0.1.4 (2017-08-28)

	Fix South migrations for Django 1.6.

	ChoicesEnum repr can be used to reconstruct an instance (item == eval(repr(item))).

0.1.3 (2017-08-28)

	Fix sdist not including sub-modules (django contrib).

0.1.2 (2017-08-27)

	README fixes and improvements.

0.1.0 (2017-08-27)

	First release on PyPI.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Choices Enum’s documentation!

 		
 Choices Enum

 		
 Installation

 		
 Features

 		
 Usage examples

 		
 Comparison

 		
 Label for free

 		
 Dynamic properties

 		
 Custom methods and properties

 		
 Iteration

 		
 Choices

 		
 Values

 		
 Options

 		
 A “dict like” get

 		
 Compatibility

 		
 Django

 		
 Fields

 		
 Graphene

 		
 Schematics

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Tools

 		
 History

 		
 0.7.0 (2020-08-02)

 		
 0.6.0 (2019-09-05)

 		
 0.5.3 (2019-02-06)

 		
 0.5.2 (2019-01-18)

 		
 0.5.1 (2019-01-04)

 		
 0.5.0 (2019-01-04)

 		
 0.4.0 (2018-07-13)

 		
 0.3.0 (2018-06-22)

 		
 0.2.2 (2017-12-01)

 		
 0.2.1 (2017-09-30)

 		
 0.2.0 (2017-09-11)

 		
 0.1.7 (2017-09-10)

 		
 0.1.6 (2017-09-08)

 		
 0.1.5 (2017-09-05)

 		
 0.1.4 (2017-08-28)

 		
 0.1.3 (2017-08-28)

 		
 0.1.2 (2017-08-27)

 		
 0.1.0 (2017-08-27)

_static/file.png

_static/minus.png

_static/plus.png

